If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-6x=59
We move all terms to the left:
6x^2-6x-(59)=0
a = 6; b = -6; c = -59;
Δ = b2-4ac
Δ = -62-4·6·(-59)
Δ = 1452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1452}=\sqrt{484*3}=\sqrt{484}*\sqrt{3}=22\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-22\sqrt{3}}{2*6}=\frac{6-22\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+22\sqrt{3}}{2*6}=\frac{6+22\sqrt{3}}{12} $
| 7-2y=-9 | | 3(x-1.25)=5x+22 | | 7-2y=-8 | | 3(w-5)-4=-5(-4w+3)-9w | | 0.75(8x+12)=23.4 | | 9x^2/3-5=139 | | -90=-3(2-7x) | | 15r-18=11r-20 | | 5x+3(8-x)=4x-2(8+x) | | 8/5(z−6)=−1/5(2z+3) | | 3t+4=3t+2+6 | | 24-2x=18+2x | | d−5−3=−4 | | 41=2b-7 | | x-(-4)=26 | | 6/27=x/9 | | 30x-10+5x+40=100 | | x+2+4x-6+4x-4=46 | | M^2-28=-3m | | -1/3*4+z=-5/6 | | 5x+3(x-10)=4(2x-6) | | 5x-25=155 | | 2(n+2)+3(n-3)=-20 | | 10-3(m-2)=40 | | 10^x*10^2=640 | | x/9+8=-3x+2 | | -7(x-3)=2x-33 | | 4v-13-10=12-24v+5 | | 3d+4=6d−11 | | b=8.2 | | 6/27=x9 | | -4p=92 |